Skip to main content

Trace with LangGraph (Python and JS/TS)

LangSmith smoothly integrates with LangGraph (Python and JS) to help you trace agentic workflows, whether you're using LangChain modules or other SDKs.

With LangChain

If you are using LangChain modules within LangGraph, you only need to set a few environment variables to enable tracing.

This guide will walk through a basic example. For more detailed information on configuration, see the Trace With LangChain guide.

0. Installation

Install the LangGraph library and the OpenAI integration for Python and JS (we use the OpenAI integration for the code snippets below).

For a full list of packages available, see the LangChain Python docs and LangChain JS docs.

pip install langchain_openai langgraph

1. Configure your environment

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
# The below examples use the OpenAI API, though it's not necessary in general
export OPENAI_API_KEY=<your-openai-api-key>

2. Log a trace

Once you've set up your environment, you can call LangChain runnables as normal. LangSmith will infer the proper tracing config:

from typing import Literal

from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool
from langgraph.graph import StateGraph, MessagesState
from langgraph.prebuilt import ToolNode

@tool
def search(query: str):
"""Call to surf the web."""
if "sf" in query.lower() or "san francisco" in query.lower():
return "It's 60 degrees and foggy."
return "It's 90 degrees and sunny."

tools = [search]

tool_node = ToolNode(tools)

model = ChatOpenAI(model="gpt-4o", temperature=0).bind_tools(tools)

def should_continue(state: MessagesState) -> Literal["tools", "__end__"]:
messages = state['messages']
last_message = messages[-1]
if last_message.tool_calls:
return "tools"
return "__end__"


def call_model(state: MessagesState):
messages = state['messages']

# Invoking `model` will automatically infer the correct tracing context
response = model.invoke(messages)
return {"messages": [response]}


workflow = StateGraph(MessagesState)

workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)

workflow.add_edge("__start__", "agent")
workflow.add_conditional_edges(
"agent",
should_continue,
)
workflow.add_edge("tools", 'agent')

app = workflow.compile()

final_state = app.invoke(
{"messages": [HumanMessage(content="what is the weather in sf")]},
config={"configurable": {"thread_id": 42}}
)
final_state["messages"][-1].content

An example trace from running the above code looks like this:

Trace tree for a LangGraph run with LangChain

Without LangChain

If you are using other SDKs or custom functions within LangGraph, you will need to wrap or decorate them appropriately (with the @traceable decorator in Python or the traceable function in JS, or something like e.g. wrap_openai for SDKs). If you do so, LangSmith will automatically nest traces from those wrapped methods.

Here's an example. You can also see this page for more information.

0. Installation

Install the LangGraph library and the OpenAI SDK for Python and JS (we use the OpenAI integration for the code snippets below).

pip install openai langsmith langgraph

1. Configure your environment

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
# The below examples use the OpenAI API, though it's not necessary in general
export OPENAI_API_KEY=<your-openai-api-key>

2. Log a trace

Once you've set up your environment, wrap or decorate the custom functions/SDKs you want to trace. LangSmith will then infer the proper tracing config:

import json
import openai
import operator

from langsmith import traceable
from langsmith.wrappers import wrap_openai

from typing import Annotated, Literal, TypedDict

from langgraph.graph import StateGraph

class State(TypedDict):
messages: Annotated[list, operator.add]

tool_schema = {
"type": "function",
"function": {
"name": "search",
"description": "Call to surf the web.",
"parameters": {
"type": "object",
"properties": {"query": {"type": "string"}},
"required": ["query"],
},
},
}

# Decorating the tool function will automatically trace it with the correct context
@traceable(run_type="tool", name="Search Tool")
def search(query: str):
"""Call to surf the web."""
if "sf" in query.lower() or "san francisco" in query.lower():
return "It's 60 degrees and foggy."
return "It's 90 degrees and sunny."

tools = [search]

def call_tools(state):
function_name_to_function = {"search": search}
messages = state["messages"]

tool_call = messages[-1]["tool_calls"][0]
function_name = tool_call["function"]["name"]
function_arguments = tool_call["function"]["arguments"]
arguments = json.loads(function_arguments)

function_response = function_name_to_function[function_name](**arguments)
tool_message = {
"tool_call_id": tool_call["id"],
"role": "tool",
"name": function_name,
"content": function_response,
}
return {"messages": [tool_message]}

wrapped_client = wrap_openai(openai.Client())

def should_continue(state: State) -> Literal["tools", "__end__"]:
messages = state["messages"]
last_message = messages[-1]
if last_message["tool_calls"]:
return "tools"
return "__end__"


def call_model(state: State):
messages = state["messages"]
# Calling the wrapped client will automatically infer the correct tracing context
response = wrapped_client.chat.completions.create(
messages=messages, model="gpt-3.5-turbo", tools=[tool_schema]
)
raw_tool_calls = response.choices[0].message.tool_calls
tool_calls = [tool_call.to_dict() for tool_call in raw_tool_calls] if raw_tool_calls else []
response_message = {
"role": "assistant",
"content": response.choices[0].message.content,
"tool_calls": tool_calls,
}
return {"messages": [response_message]}


workflow = StateGraph(State)

workflow.add_node("agent", call_model)
workflow.add_node("tools", call_tools)

workflow.add_edge("__start__", "agent")
workflow.add_conditional_edges(
"agent",
should_continue,
)
workflow.add_edge("tools", 'agent')

app = workflow.compile()

final_state = app.invoke(
{"messages": [{"role": "user", "content": "what is the weather in sf"}]}
)
final_state["messages"][-1]["content"]

An example trace from running the above code looks like this:

Trace tree for a LangGraph run without LangChain


Was this page helpful?


You can leave detailed feedback on GitHub.